1. Suatu proyek pembangunan gedung sekolah dapat diselesaikan dalam x hari
dengan biaya proyek perhari |
ratus ribu rupiah. |
Agar biaya minimum maka proyek tersebut diselesaikan dalam waktu….
A. 40 hari
B. 60 hari
C. 90 hari
D. 120 hari
E. 150 hari
ANS: E. 150 hari
Pembahasan
Tentukan dulu fungsi biaya proyek dalam x hari, kalikan biaya pada soal dengan x
Biaya minimum tercapai saat turunannya = 0,
2. Suatu perusahaan memproduksi x buah barang. Setiap barang yang diproduksi memberikan keuntungan (225x − x2) rupiah. Supaya total keuntungan mencapai maksimum, banyak barang yang harus diproduksi adalah…
A. 120
B. 130
C. 140
D. 150
E. 160
ANS: D. 150
Pembahasan
Keuntungan satu barang adalah (225x − x2), sehingga jika diproduksi x buah barang maka persamaan keuntungannya adalah keuntungan satu barang dikalikan dengan x
U (x) = x (225x − x2)
U (x) = 225 x2 − x3
Nilai maksimum U (x) diperoleh saat turunannya sama dengan nol
U ‘ (x) = 0
450 x − 3x2 = 0
Faktorkan untuk memperoleh x
3x(150 − x) = 0
x = 0, x = 150
Sehingga banyak barang yang harus diproduksi adalah 150 buah.
Jadi berapa keuntungan maksimumnya? Masukkan nilai x = 150 ke fungsi U (x) untuk memperoleh besarnya keuntungan maksimum.
3. Suatu perusahaan memproduksi x unit barang dengan biaya (4x2−8x+24)
ribu rupiah untuk tiap unit. Jika barang tersebut terjual habis dengan
harga Rp40.000,00 untuk tiap unit, maka keuntungan maksimum yang
diperoleh perusahaan tersebut adalah ⋯⋅
A. Rp16.000,00 D. Rp52.000,00
B. Rp32.000,00 E. Rp64.000,00
C. Rp48.000,00
ANS:
B. Rp32.000,00
Misalkan menyatakan total biaya produksi unit barang, menyatakan harga jual unit barang dalam satuan ribu rupiah, dan menyatakan keuntungan yang diperoleh atas penjualan unit barang, maka
Agar maksimum, nilai turunan pertama harus bernilai .
Diperoleh atau . Karena menyatakan jumlah barang dan nilainya tidak mungkin negatif/pecahan, maka yang diambil adalah .
Substitusikan ke .
Jadi, keuntungan maksimum yang diperoleh perusahaan tersebut adalah Rp32.000,00.
4.Suatu pembangunan proyek gedung sekolah dapat diselesaikan dalam hari dengan biaya proyek per hari ribu rupiah. Agar biaya proyek minimum, proyek tersebut harus diselesaikan dalam waktu hari.
A. C. E.
B. D
ANS:
C.
Pembahasan
Misalkan
menyatakan biaya proyek selama hari dalam satuan ribu rupiah, sehingga
Agar biaya proyek minimum, nilai yang bersesuaian dapat ditentukan saat , yakni
Jadi, proyek tersebut harus diselesaikan dalam waktu agar biaya proyeknya minimum.
5. Proyek pembangunan suatu gedung dapat diselesaikan dalam hari dengan menghabiskan biaya proyek per hari sebesar ratus ribu rupiah. Biaya minimum proyek pembangunan gedung tersebut adalah juta rupiah.
A. C. E.
B. D.
ANS: C.
Pembahasan
Misalkan
menyatakan biaya proyek selama hari dalam satuan ratus ribu rupiah, sehingga
Agar biaya proyek minimum, nilai yang bersesuaian dapat ditentukan saat , yakni
Proyek tersebut harus diselesaikan dalam waktu 30 hari agar biaya proyeknya minimum. Biaya yang dimaksud sebesar
Jadi, biaya minimum proyek pembangunan gedung tersebut adalah
6. Sebuah taman berbentuk persegi panjang dengan keliling meter dan lebar meter. Agar luas taman maksimum, panjang taman tersebut adalah meter.
A. C. E.
B. D.
ANS:
C.
Pembahasan
Panjang taman tersebut dapat ditentukan dengan menggunakan keliling dan lebarnya.
Nyatakan luas persegi panjang sebagai fungsi terhadap variabel .
Luas akan maksimum saat , sehingga
Saat , diperoleh
Jadi, panjang taman tersebut adalah
7. Sebuah peluru ditembakkan ke atas. Jika tinggi meter setelah detik dirumuskan dengan , maka tinggi maksimum yang dicapai peluru tersebut adalah meter.
A. C. E.
B. D.
ANS: D.
Pembahasan
Diketahui:
.
Turunan pertama fungsi adalah
Nilai akan maksimum saat , sehingga ditulis
Ketinggian maksimum yang dapat dicapai peluru adalah saat , yaitu
Jadi, ketinggian maksimum peluru adalah
DAFTAR PUSTAKA
https://matematikastudycenter.com/kelas-11-sma/124-aplikasi-turunan
https://mathcyber1997.com/soal-dan-pembahasan-aplikasi-turunan-diferensial/